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ABSTRACT 

This work is concerned with the in te rna l  a i r  b l a s t  resu l t ing  from f i r i n g  a 
1 5 5 m m  Howitzer gun i n  a closed test range. The range is about 260 meters long 
and has a typical cross-section of 5x6 meters. Various openings i n  the range 
are closed by steel doors. A good estimate of the  dynamic load on the doors 
is cri t ical  f o r  t h e i r  proper design, and is the main objective of the present 
study . 
The pressure loading on the walls is calculated using a numerical hydro- ~ 

dynamic code. The problem is formulated as a quasi one-dimensional flow i n  a 
var iable  area duct. The i n i t i a l  conditions of the flow at  the muzzle gun 
posit ion are derived from a simplified model f o r  the mixing of the hot 
combustion products of the propellant and a f i n i t e  mass of the ambient air. 
I n  addition, two-dimensional calculations were carr ied out t o  get  more 
detai led d is t r ibu t ions  of the pressure loading a t  the target end and a t  the 
f i r i n g  arena. KPa 
(6 p s i )  are at ta ined f o r  typical  periods of about 100 m s .  

It is found tha t  ref lected overpressure leve ls  of about 35 
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1. INTRODUCTION 

Safe testing of large ca l iber  guns and ammunition i n  the open f i e l d  requires a 
large area t o  be closed as a precaution against  the various hazards associated 
with the f i r i ng .  An a l te rna t ive  approach would be to  conduct the tes t ing  
within a closed s t ructure .  Such a structure w i l l  have t o  withstand the 
dynamic b l a s t  loading generated by the gun. In  par t icu lar ,  the loading on 
various daars i n  the s t ruc ture  is required as an input f o r  t h e i r  design. 

The presew paper deals with the in te rna l  b l a s t  loading generated i n  a closed 
f i r i n g  range by a 155mm Howitzer gun. The main s t ruc ture  of the range is 
essent ia l ly  a long tunnel extending f o r  about 26Om, with in te rna l  cross- 
sect ional  dimensions of 5m wide and 6m high. The range includes two f i r i n g  
chambers along the tunnel, having s l igh t ly  larger moss-sections, and a target  
chamber which is designed t o  contain all possible effects of rounds h i t t i n g  
the target o r  chamber. 

The b l a s t  wave produced i n  a closed s t ruc ture  due t o  an energy burst  is 
s igni f icant ly  d i f fe ren t  from the b l a s t  wave i n  a f ree  air, when long times are  
considered. This is so because the w a l l s  of the s t r u c t u r e  reflect the 
incident wave, and thus contain the energy t o  a confined space. As a r e s u l t  
the pressure leve ls  and impulses i n  a closed s t ruc ture  may be much higher than 
the corresponding ones f o r  the f r ee  b l a s t  wave. 

In  the c l a e d  proof range described above the energy containment e f f ec t  is 
even more severe due t o  the tunnel-like geometry of the s t ructure .  This 
geometry forces the b l a s t  wave t o  move i n  one direct ion,  thus focussing the 
momentum of the b l a s t  i n  the longitudinal direct ion,  As a r e s u l t ,  the decay 
of b l a s t  peak pressure with distance is much slower than i n  the spherical  
case. B a k e r  [l] quotes Lindberg and F i r th  who studied b l a s t  wave propagation 
for  three d i f fe ren t  symmetries: plane, cyl indrical ,  and spherical .  The 
r e su l t s  show very c lear ly  tha t  i n  the region where the spherical  wave decays 
with the th i rd  power of distance,  the plane wave decays o n l y  with the f i r s t  
power. ~ 

~ 
~ 

In  the present work, the b l a s t  wave propagation is calculated using the 
hydrodynamzc computer code SCALE. This code can handle a t i m e  dependent 
two-dimensional compressible flow and its dynamic interact ion with a thin 
s h e l l  s t r u c t u r e .  In  the present case, due to  the elongated shape of the proof 
range, a quas i  one-dimensional approximation w a s  f m d  adequate f o r  studying 
the gross behavior of the b l a s t .  To get more d e t a i l s  of the loading on the 
target end, a f u l l  two-dimensional model w a s  employed. Examples of detai led 
calculations f o r  b l a s t  waves from high explosive charges may be found i n  
references- [2] and [3]. 

The paper dncludes several  preparatory sections t o  es tab l i sh  the va l id i ty  of 
the calculations.  Section 2 describes the model f o r  the i n i t i a l  muzzle 
b las t .  Section 3 gives the de t a i l s  of the numerical solut ion.  Section 4 
discusses the  propagation of a b l a s t  wave i n  a long tunnel. A parametric 
study of the i n i t i a l  muzzle b l a s t  e f f ec t  on the w a l l  load is  given i n  sect ion 
5, and the convergence of the numerical scheme is demonstrated i n  section 6. 
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Sections 7-10 deal with the loading on the doors. Section 7 gives the 
one-dimensional solut ion f o r  a variable cross sect ion range, with emphasis on 
the target end. I n  Section 8 a more detai led two-dimensional calculation f o r  
the target end is given. I n  Section 9 the load on the f i r i n g  chamber door is 
obtained. Finally,  Section 10 treats the effect of venting from the f i r i n g  
chamber door, simulating a f i r i n g  with an open door. 

2. MUZZLE BLAST MIXING MODEL 

Following the e x i t  of the p ro jec t i l e  from the muzzle, the hot combustion 
products of the propellant eject out i n  the form of an energetic stream which 
mixes with a large mass of the ambient air .  The mixing process is  very 
complex, and its determination would require s ign i f icant  computational and 
experimental e f f o r t s  [4]. I n  the present investigation, however, w e  are 
interested i n  the f l o w  a t  large distances from the mixing region, and 
therefore it suf f ices  t o  consider only an average state of the mixing region. 
The averaged flow variables of the mixture w i l l  serve as i n i t i a l  conditions 
f o r  the b l a s t  wave calculation. 

It w i l l  be assumed tha t  the t o t a l  energy of the propellant E is divided in to  
three main parts: Kinetic energy of the pro jec t i le ,  Kp, k ine t ic  energy of the 
combustion gases, K c ,  and in te rna l  energy of the combustion products, U c ,  so 
t h a t  

E = Kp + KC + UC 

In  the above energy balance several  energy losses  were neglected, namely, 
f r i c t iona l  losses  t o  the bar re l ,  heat losses  t o  the bar re l  and pro jec t i le ,  and 
other minor losses  such as energy needed f o r  spinning the pro jec t i le .  A l l  
these losses  are included i n  U ,  i n  order t o  obtain a conservative estimate of 
the b l a s t  energy. For convenience, the k ine t ic  energy components w i l l  be 
represented as fract ions of the t o t a l  propellant energy: 

Fp = Kp/E , FC = Kc/E 

The combustion products are assumed t o  mix with a f i n i t e  volume of the ambient 
a i r ,  V,  such tha t  the in te rna l  energy and momentum of the mixture are 
conserved i n  the process. This r e su l t s  i n  the following re la t ions  f o r  the 
mixture average properties: 

M = Mc + Ma ; d = M/V 

U = U c  + U a  ; e = U/M 

W = M c / M  Wc ; KC = % Mc Wcz 
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H e r e  M,U and W are the mixture m a s s ,  in te rna l  energy and velocity,  
respectively: d and e are the density and specific internal. energy of the 
mixture. The pressure is determined by d and e using the equation of state 
( idea l  gas, with specific heat ratio equal t o  t h a t  of air) .  The indices c and 
a re fer  t o  combustion products and air, respectively. 

For a given propellant m a s s  and energy, one has t o  specify Fp, Fc and the air 
volume V i n  order t o  close the model. Krier and Adams 151 give a typical 
energy balance f o r  large caliber guns, which shows tha t  Fp is around 0.32. Fc 
is more d i f f i c u l t  t o  estimate, since the k ine t ic  energy of the gases leaving 
the bar re l  var ies  with t i m e .  A representative average value of t h i s  velocity 
is the p ro jec t i l e  velocity.  Assuming t h a t  the combustion products have a 
uniform velocity enables to determine Fc. A s  an example, assume a propellant 
m a s s  of Mc=IOKg,  cornbustion products velocity Wc = 1000 m / s ,  the  kinet ic  
energy K c  is then -5 MJ. To detrmine the t o t a l  propellant energy one needs 
the propellant specific energy Q. Reference [ 6 ]  gives typical values of the 
propellant impetus i n  the range F11.0-1.1 MJ/Kg.  To be on the safe s ide ,  the 
larger value of 1.1 MJ/Kg is adopted. The specific energy of the propellant Q 
is found from the re la t ion  [7] 

Q = F/(T - 1) 
H e r e  T is the r a t i o  of spec i f ic  heats of the combustion products. For the 
155mm charge ~=1.24. Therefore: 

Q - 4.6 M J / K g  
E = Mc Q = 46 MJ 
FC = Kc/E - 0.11 

The remaining parameter i n  the model is the volume af the air  t h a t  mixes w i t h  
the combustion products. It w i l l  be assumed that V is the volume of the cell 
i n  the computational mesh tha t  represents the muzzle region. The actual value 
depends on the par t icu lar  choice of the mesh. In  the uniform cross-section 
s tudy  V w a s  i n  the range 40-60 cubic meters. In  the var iable  cross-section V 
w a s  about 100-250 cubic meters. 

3.  NUMRERICAL SOLUTION 

The hydrodyiWnic calculation w a s  c a r r i ed  out  using the computer program SCALE. 
This program is based on numerical schemes employed i n  w e l l  known hydrocodes 
such as SALE [8], DISCO [9] and PISCES [lo]. The air w a s  represented as an 
ideal gas with a spec i f ic  heat r a t i o  of 1.4. For the preliminary s tudy of the 
uniform cross-section range, the computational mesh consisted of a column of 
equa l ly  spaced grid points,  representing a column of air i n  the tunnel-like 
range. The 
a i r  is assumed to be i n i t i a l l y  a t  standard conditions and a t  r e s t ,  except i n  
one cell which represents the muzzle b l a s t  f i e ld .  In that  c e l l ,  the i n i t i a l  
conditions of density, pressure and material velocity were taken according to  
the mixing madel which w a s  described i n  the previous section. The boundary 
conditions were taken as r ig id  w a l l  a t  both ends of the column. 

The length of t h i s  column w a s  divided to  70 cells of 3.33 m each. 
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4. UNIFORM CROSS-SECTION RANGE 

The uniform cross-section range is  regarded as a simple model f o r  studying the 
main features  of the b l a s t  waves. The main tunnel sect ion of the proof range, 
with a cross-section of 5x6 meters, is represented as a c i r cu la r  tube with a 
radius of 3.09 m. (Fig.1) .  The tube is 235 meter long, with the ta rge t  end 
a t  the Z=-200 m coordinate, and the f i r i n g  chamber door a t  Z=+35. The gun 
muzzle is located a t  the or ig in  (Z=O). For t h i s  case the e n t i r e  energy of a 
10 Kg propellant w a s  assumed t o  be converted to  in te rna l  energy of the 
combustion products (Fc=Fp=O). 

The b l a s t  f i e l d  evolution i n  t i m e  is  shown i n  Figs.2-7 by the pressure 
d is t r ibu t ions  i n  the tube, and by pressure t i m e  h i s to r i e s  a t  two locations,  
Figs.8-9. All the figures show overpressure normalized by standard 
atmospheric pressure. 

A t  t = O  the high pressure a t  Z=O gives rise t o  two shock waves moving i n  
opposite direct ions away from Z=O. The backward facing shock (i.e. the  wave 
moving towards the f i r i n g  chamber door) h i t s  the door a t  t=75 m s ,  and is 
amplified due t o  re f lec t ion  at  the closed end. Fig.2 shows c lear ly  the 
ref lected shock w i t h  an overpressure of about 0.75. A t  the same t i m e  the wave 
facing the target end has progressed about 35 m and has an amplitude of about 
0.37. A t  t=200 m s  (Fig.3),  both waves have progressed fur ther  towards the 
ta rge t ,  while t h e i r  amplitude has decayed t o  about 0.25. Fig.4 shows the 
d is t r ibu t ion  at  t=550 m s ,  when the leading shock has j u s t  h i t  the  ta rge t  end. 
Due t o  re f lec t ion ,  the leading shock amplitude is about 0.4,  or about t w i c e  
tha t  of the shock behind it. Fig.5, a t  t=800 m s ,  shows the two ref lected 
waves now moving back towards the f i r i n g  chamber, with an amplitude of ~ 0 . 1 5 .  
Subsequent d i s t r ibu t ions  show the waves moving fur ther ,  with some more decay 
of t h e i r  peaks (Fig.6, t=1150 m s ) ,  and after re f lec t ion  from the f i r i n g  
chamber end (Fig.7, t=1500 m s ) .  

D 

Figs.8-9 show pressure t i m e  h i s tor ies  a t  two locations. Fig.8 gives the 
pressure at the f i r i n g  chamber door. The backward shock wave ar r ives  at  t=40 
m s  and reaches its peak due t o  re f lec t ion  a t  t.75 m s .  The f i n i t e  rise t i m e  is 
a r e su l t  of the numerical scheme which smears the shock discontinuity over a 
f i n i t e  number of gr id  cells. The overpressure remains close t o  zero u n t i l  the 
a r r iva l  of the two shock waves (described earlier) a f t e r  re f lec t ion  from the 
ta rge t  end (t=1150 ms). A more in te res t ing  pressure t i m e  h is tory is  shown i n  
Fig.9 f o r  the ta rge t  end. It shows two peaks, amplified by re f lec t ion  t o  an 
amplitude of about 0.4. 

5. EFFECT OF MIXING MODEL PARAMETERS 

The mixing model of section 4 assumes tha t  the momentum of the combustion 
products is imparted t o  the e n t i r e  mixture. Although t h i s  is  a plausible 
assumption i n  the average sense, its accuracy can not be taken forgranted. 
Since an accurate description of the mixing process is outside the scope of 
the present work, a short  parametric study of the e f f ec t  is given. 
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For the parametric study the following values are assumed: 

Total propellant energy: E = 4 6 M J  
Pro jec t i le  k ine t ic  energy fraction: Fp = 0.30 
Volume of air  i n  the mixture: V = 60 cu.m. 

Four cases w e r e  calculated,  w i t h  Fc = 0, 0.1. 0.2 and 0.6. The r e su l t s  of 
these calculations are summarized i n  Table 1. Fig.10 shows the overpressure 
t i m e  h is tory at  the target end fo r  Fc=O. These 
values are lower than those of Fig.9 since i n  the present case with Fp-0.3 
there is less energy available to the mixture. ?he following Fig.11 fo r  the 
extreme value of Fc=0.6 shows a consistent trend of an increase i n  the first 
peak and a decrease i n  the second peak. The sum of the two peaks is almost 
constant, as is evident from Table 1. 

The peaks are 0.33 and 0.29. 

TABLE 1 
Peaks of the Normalized Overpressure as Function 

of the Combustion Products Kinetic Energy 

Fc 

0 

0.1 

0.2 

0.6 

F i r s t  Peak 

0.33 

0.37 

0.39 

0.42 

Second Peak 

0.29 

0.25 

0.24 

0.15 

SUlfl 

0.62 

0.62 

0.63 

0.57 

It may be concluded f r o m  these r e su l t s  tha t  the gas kine t ic  energy may 
increase the peak pressure by about 27%. In  sect ion 2, Fc w a s  estimated as 
0.11. One m a y  take Fc=O.l as a working approximation and expect the m o d e l  
var ia t ion to be within *13% of the calculated figure.  

6. NUMERICAL CONVERGENCE 

The numerical scheme used i n  the SCALE code employs the viscosi ty  
method f o r  t rea t ing  shock wave discont inui t ies  i n  the flow. As a r e s u l t  both 
shock leve l  and steepness depend on the mesh size. The numerical r e s u l t s  
presented above were obtained fo r  a mesh of 70 cells. A question arises as to  
how far are these r e su l t s  from the theoret ical  l i m i t  of the solut ion when the  
number sf cells is very large. 

artificial 
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To test the convergence of the numerical solution a representative case was 
calculated w i t h  an increasing number of mesh cells, N. The peak pressure a t  
the target end is given i n  Table 2 f o r  three cases: N=70,100 and 150. The 
variat ion of the peak overpressure at  the  ta rge t  end w a s  then plot ted against  
6=100/N, where 6 represents the cell  s ize .  Fig.12 shows the overpressure as 
function of d2. From t h i s  p lo t  i t  is clear t h a t  the solut ion is converging 
l i nea r ly  with 6* as the number of cells increases. The theoret ical  l i m i t  may 
be obtained by extrapolation t o  d=O. The l i m i t  value of the overpressure is 
0.303. I n  addition t o  the 
increase i n  the peak values, a measurable increase i n  the wave steepnes with N 
w a s  a l so  noticed, by inspection of the pressure t i m e  h is tory f o r  the three 
cases. 

This value is about 22% over the N=70 calculation. 

(Not included i n  the paper). 

N Peak 

70 0.2474 

100 0.2768 

150 0.2910 

I n  what follows, the  computations w i l l  be carr ied out with a moderate value 
of N (-80) and then a "correction factor" w i l l  be applied t o  obtain the 
theoret ical  converged value. 

6=100/N 62 

1.43 2.04 

1 .oo 1 .oo 

0.667 0.44 

TABLE 2 
Peaks of the Normalized Overpressure as Function 

of the Number of Mesh C e l l s  i n  the Calculation 

7. VARIABLE CROSS-SECTION RANGE 

The f i n a l  evaluation of the loads i n  the f i r i n g  range were obtained with a 
variable cross-section model. In  t h i s  quasi one-dimensional model the 
var ia t ion i n  cross-sectional area must be continuous. The actual 
discontinuous changes were therefore replaced by gradual var ia t ions of the 
area, as shown i n  Fig.13. The parameters of the problem were as follows: The 
propellant mass was taken as 9.8 K g .  ' I n  view of the discussion of 
section 7, Fc w a s  taken as 0.1. Fp w a s  taken as 0.30, (a more conservative 
value than indicated i n  [5]), and the specific propellant energy Q w a s  taken 
as 4.6 MJ/Kg,  according t o  the estimate of sect ion 4. The number of 
computational cells was 80. 
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The pressure load t i m e  h is tory a t  the ta rge t  end is shown i n  Fig.14. The 
peak normalized overpressure is 0.19, with a pulse duration of about 100 m s .  
The first peak is immediately followed by a second peak of almost the same 
leve l ,  and a s i m i l a r  pulse duration. Both the peak l eve l  and pulse duration 
depend on the computational cell s ize .  According t o  the analysis of section 
6, the converged peak value should be about 20% higher, i.e. -0.23. A 
fur ther  increase of the peak value by about 13% follows from the analysis of 
section 5, so t ha t  the estimate f o r  the maximum load becomes -0.26. 

Another factor  tha t  a f f ec t s  the b l a s t  peak leve ls  is the  posit ion of the 
muzzle within the range. The actual gun muzzle is located about 12.5m from 
the f i r i n g  chamber end. However, the "center" of the muzzle b l a s t  may be a 
few meters away f r o m  the muzzle end, due t o  the motion of the combustion 
products. The nominal case quoted above assumed tha t  the in i t ia l  b l a s t  
mixture occupied the space i n  the firing chamber between 12.5m t o  14.5m from 
the chamber end. To assess the effect of the i n i t i a l  location of the muzzle 
b l a s t ,  four cases w e r e  calculated,  w i t h  varying posit ion of the i n i t i a l  b las t  
energy source. From the r e su l t s  of these calculations it w a s  concluded 
tha t  an additional factor  should be applied t o  the peak load. This factor  w a s  
estimated as -1.17, which brings the load estimate f r o m  the  former f igure of 
0.26 t o  -0.30. 

To sum up, the calculated loads should be amplified due to  three e f fec ts :  (a) 
numerical  convergence (-20%), (b) k ine t ic  energy of propellant gas (-13%), and 
(c )  b l a s t  energy posit ion (-17%). 

An additional fac tor  t h a t  could a f f ec t  the load on the  ta rge t  end door is 
local  two-dimensional flow, resul t ing from the geomeery a t  the target end. 
This  e f f ec t  w i l l  be discussed i n  the next section. 

8. TWO-DIMENSIONAL EFFECTS AT TARGET END 

The flow a t  the target end requires special a t tent ion because the geometry 
deviates from the assumed cross-section uniformity. The shock wave which 
approaches the ta rge t  end is almost planar, but the abrupt change i n  
cross-section causes the wave t o  d i f f r ac t .  (Fig.15). The resu l t ing  curved 
shock propagates fur ther  i n t o  the target chamber, eventually re f lec t ing  from 
the walls. Although the d i f f rac t ion  weakens the shock, the subsequent 
ref lect ions strengthen it ,  and i t  is d i f f i c u l t  t o  estimate the net  r e s u l t  
without an appropriate two-dimensional calculation. 

A two-dimensional calculation w a s  carr ied out f o r  the generic shape shown i n  
Fig.15. The computational g r i d  is shown i n  Fig.16. The flow w a s  s ta r ted  
assuming an oncoming plane shock f ront  with a normalized peak overpressure of 
0.15, decayrng exponentially with t i m e .  selected 
times is shown i n  Figs.17. The velocity vector p lo t  c lear ly  show the 
d i f f rac t ion  of the wave and its interact ion with the w a l l s .  

The resu l t ing  flow f i e l d  a t  
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D The pressure t i m e  h i s to r i e s  a t  four locations are shown i n  Fig.18. The 
selected locations are indicated i n  Fig.15 by the numbers 2,4,5 and 6. Point 
2 represents an almost undisturbed one-dimensional geometry. Points 4 ,5  and 6 
represent typical posit ions at the ta rge t  end door. 

The curves indicate  tha t  peak pressure i n  excess of 0.3 are attained. The 0.3 
l eve l  corresponds t o  ordinary re f lec t ion  of a normal weak shock wave from a 
r ig id  w a l l .  I n  fact the peak value a t  point 2 (Fig.18) is 0.29, as expected 
f o r  t h i s  point,  where the wave behaves loca l ly  as a plane wave. For the other 
locations,  ref lect ions contribute t o  higher peak values, about 0.35 f o r  the 
three locations a t  the s ide  w a l l  with the door. (points 4.5 and 6).  The 
two-dimensional effect f o r  t h i s  case can be summed up by saying tha t  an ex t ra  
amplification of the peak occurs, from 0.3 t o  0.35. 

The calculated case is believed to be a conservative model of the actual 
geometry, and therefore the normalized peak overpressure of 0.35 should be 
considered an upper bound. 

9. BLAST LOAD ON FIRING CHAMBER DOOR 

The one-dimensional approach t o  the b l a s t  f i e l d  within the proof range enables 
one t o  obtain cross-section averages of the flow variables.  However, the 
averaged quant i t ies  are meaningful only a t  large distances from the energy 
source. The flow f i e l d  i n  the v i c in i ty  of the muzzle is f u l l y  three 
dimensional, due t o  the complex wave ref lect ions and refract ions i n  the f i r i n g  
chamber. Nevertheless, an upper bound on the pressure load a t  the f i r i n g  
chamber door w i l l  be obtained, based on the one-dimensional model and known 
data on spherical  blast waves from explosions. 

D 
The pressure t i m e  h is tory a t  the door end predicted by the one-dimensional 
model is shown i n  Fig.20. The peak of the normalized overpressure is about 
0.2, with a duration of about 40 m s .  Applying a correction f o r  numerical 
convergence brings the peak t o  m0.24. This f igure const i tutes  the  one- 
dimensional estimate. 

An upper bound on the pressure peak may be obtained by taking the  energy burst  
as  a spherical  explosion. The muzzle b l a s t  energy is equivalent t o  tha t  of a 
7 Kg TNT charge, assuming Fp=O.3. One finds f o r  the normalized ref lected 
overpressure from a 7 Kg charge a t  a distance of 12.5m a value of =0.47, using 
e i t h e r  tabulated data  ([l], p.158) o r  the b l a s t  wave curves i n  w e l l  known 
manuals. This peak should be taken i n  conjunction with the load duration 
found from the one-dimensional model, despite the fact t h a t  the duration of 
the corresponding spherical b l a s t  would be much lower. It is believed tha t  
t h i s  def in i t ion  of the load is on the safe s ide  and thus a more elaborate 
two-dimensional calculation is not necessary. 
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10. VENTING FROM FIRING CHAMBER 

It is w e l l  known tha t  venting can a l l ev ia t e  the loads produced i n  closed 
structures by explosive b las t s .  However, the effectiveness of venting depends 
on the vent s i z e  and on the geometry of the structure.  

The closed proof range has a large 5mx6m door at the end of the f i r i n g  
chamber, The effect of operating the range while t h i s  door is l e f t  open is 
examined i n  t h i s  section. 

The computational model used f o r  the closed end w a s  modified a t  the f i r i n g  
chamber end (Fig.13). F i r s t ,  the cross-sectional area w a s  reduced to  the door 
opening. Second, the boundary condition a t  the end w a s  modified t o  allow for  
the air t o  flow out of the opening, with an applied pressure equal t o  the 
ambient pressure. The resu l t ing  pressure t i m e  U s t o r y  at  the ta rge t ,  Fig.21, 
is s igni f icant ly  d i f fe ren t  f r o m  the corresponding one f o r  the closed end 
(Fig.14): It has only one s igni f icant  peak as opposed t o  the double peaks i n  
the closed end pressure pulse. The first peak is followed by a w e a k  peak and 
a ra ther  strong negative pressure. This negative phase is a r e s u l t  of the 
pressure rasefaction a t  the open end. However, from the prac t ica l  view 
point the opening of the door does not reduce the design loads since the peak 
values are about the same, with a s imilar  pulse duration. 

11. SUMMAEiY AND CONCLUSIONS 

The pressure loads inside a closed proof range resu l t ing  from the f i r i n g  of a 
155mm Howitzer (charge 10) w e r e  calculated using a computer code for unsteady 
compressible flow, and a simple model f o r  the muzzle b las t .  It was found tha t  
the loailing a t  the target end has a peak overpressure of the order of 0.35, 
with a pulse duration of over 100 m. For the load a t  the f i r i n g  chamber 
door, ati upper bound on the peak of -0.47 w a s  estimated from data on spherical  
explosions, with a pulse duration of -40 m s ,  based on the one-dimensional 
model. 

Several fac tors  tha t  affect the calculated peak overpressure were discussed 
and estimated, namely: 

- Effect of combustion products k ine t ic  energy. - Effect of numerical convergence. 
- Effect of muzzle b l a s t  i n i t i a l  location. 
- Two-dimensional effects of shock re f lec t ion  a t  the target  end. 

The loads were found t o  have typical pulse duration of 40-100 m s .  Since the 
loads 82\e to  be applied t o  s t ructures  having natural  vibration periods of the 
same order of magnitude, the dynamic response of the s t r u c t u r e s  must be 
considered. 
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FIRING CHAMBER 
TARGGT CHAHBER 

CEU CONTAINING 

- -- MUZZLE BLAST 5( 
1 

FIGURE lb: THE COMPUTATIONAL MESH FOR THE 
UNIFORM CROSS-SEXTION RANGE. 

X - LOCATION OF PRESSURE TIME HISTORY PLOT 



3 

l . S ?  

I 155 me F I R I N G  RANGE - 1D MODEL I 

FIGURE 2: NORMALIZED OVERPRESSURE PROFILE AT TIME I 75 HS. 
(UNIFORM CROSS-SECTION RANGE). 

FIGURE 3: NORMALIZED OVERPRESSURE PROFILE AT TIME = 200 MS. 
(UNIFORM CROSS-SECTION RANGE). 
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FIGURE 6: NORMALIZED OVERPRESSURE PROFILE AT’TIHE = 1150 HS. 
(UNIFORM CROSS-SECPION RANGE). 
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FIGURE 7: NORMALIZED OVERPRESSURE PROFILE AT TIME = 1500 MS. 
(UNIFORM CROSS-SECTION RANGE). 
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TIME, mS FIGURE 10: PRESSURE TIME HISTORY AT THE TARGET END. 
EFFecT OF PROPELLANT Ms KINETIC ENERGY. 

Fp = 0.30 ; FC = 0.  

FIGURE 11: PRESSURE TIME HISTORY AT THE TARGET END. 
EFFECT OF PROPELLANT GAS K I N E T I C  ENERGY. 

Fp = 0.30 : Fc a 0.6 

TIME, mS 
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FIGURE 12: CONVERGENCE OF THE NUMERICAL SOLUTION. 
N = NUMBER OF GRID CELLS; 6 = 100/N. 
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FIGURE 13: ME MESH FOR M E  VARIABLE CROSS-SEXXION RAN=. 
TOP: FIRING CHAXBER Da)B CLQSED (NO VEWITNG). 
BoTIon: FIRING CHAMBER WOR OPEN (WITH V W X N G ) .  

778 



FIGURE 14: PRESSURE TIME HISTORY AT THE TARGET END. 
VARIABLE CROSS-SECTION RANGE. 

Fp = 0.30 : Fc = 0.1 

FIGURE 15: SCHEMATIC OF WAVE PROPAGATION 
IN THE TARGET CHAMBER. 

THE CURVED LINES INDICATE THE 
SHOCK FRONT AT VARIOUS TIMES. 
(TIME INCREASES FROM a TO c) 
NUMBERS INDICATE LOCATIONS OF 
PRESSURE TIME HISTORY PLOT. 

TIME, I& 

FIGURE 16: THE COMPUTATIONAL MESH FOR THE 
TWO-DIMENSIONAL CALCULATION. 
(TARGET END SIMULATION). 
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FIGURE 18: PRESSURE TIME HISTORY AT POIhT 2 
(TARGET END 2D SIMUIATION) 

TIME, m$ 

FIGURE 19: PRESSURE TIME HISTORY AT POINT 6 
(TARGET END 2 D  SIMULATION) 
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FIGURE 20: PRESSURE WAD AT THE FIRING W R E R  DOOR. 
VARIABLE C R O S S - S W I O N  RhUGE. 

Fp - 0.30 ; Fc .I 0.0 
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TIE, mS FIGURE 21: PRESSVAE TIME HISTORY AT " H E m C n :  END. 

VARIABLE eRoSs-SEFTION RANGE. WITH VR4TING. 
Fp = 0.30 : Fc - 0.1 
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